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ABSTRACT 

We discuss present limitations on the predictability of ultra- 
high energy cross sections in QCD. Assuming coupled Altarelli- 
Parisi evolution. we exhibit kinematic boundaries in the x, Q2 plane 
beyond which no reliable predictions can now be made. The bound- 
aries occur for any large Q* for small enough x. and follow from the 
effects of boundary conditions on small-x asymptotic estimates. A 

typical boundary occurs at l/x ; [ln(Q2/A~D)/ln(Q~/A~)]mb'8N where 

m depends on theoretical models. Such boundaries occur in phenomen- 
ologically important regions, and are distinct from the unitarity 
boundaries discussed by Gribov. Levin. and Ryskin: the unpredictable 
regions could be predicted with new data at medium Q2 and small X. 
We also discuss the possibility of significant effects throughout the 
SSC kinematic regions from unexpected consequences of unitarity 
boundary conditions. 

*Presented at the "Workshop on Physics Simulations at High 
Energy,Madison, 1986" 
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WALL-X 

One of the prerequisites for considering hadron physics In the 
energy regime of supercolliders' is an accurate description of parton 
distributions. The typical values of momentum scales Q' involved are 
large. say 10' < Q*(GeV*) c 10'. but this does not cause much uncer- 
tainty since scaling violations are a slowly varying effect. Row- 
ever, as the c.m. energy (s increases, the typical momentum fraction 
x of partons decreases, and this is an important effect for very 
large 8. For reference, the annihilation of partons carrying frac- 
tions x1. x2 to produce an object of mass I4 is constrained by 
x1x2 = Hz/s; if I4 = 20 GeV and Js * 20 TeV, ve have ~1x2 = 10ec. 
There are few direct measurements of the partoo distributions for 
10-2 < x c lo-' , so present supercollider predictions are heavily 
dependent on theoretical assumptions. 

We present results here on the dependence of parton distribu- 
tions as various levels of theoretical uncertainty are exposed. One 
of the striking effects we will be able to explain is the observa- 
tion of EELQ* that the differences betveen different inputs is ironed 
out by the QCD evolution as one goes to larger Q* for fixed and small 
x. This "empirical" result, the outcome of numerical experiments. 
follows from our analysis. At the same time we will be able to pre- 
dict regions in the Q* and x plane which remain overly sensitive to 
unreliable input. These regions seem to be phenomenologically impor- 
tant. The general description of our results is that the scale Q* 
must be increased in a specific manner as Js is increased if one 
wants a fixed level of theoretical predictability. 

The evolution of parton distributions in the Q* and x plane 
can be determined with the Altarelli-Pariti (AP) equations.' It is 
important to recognize that the history of the subject has empha- 
sized the renormalization-group Q* dependence of moments, but that 
this in turn implies an interplay of the evolution in the X-Q' plane. 
In fact, the small-x limit of the equations exhibits an important 
symmetry in certain variables representing the x and Q* dependence, 
as we will show below. However, the region of experimental interest 
is one where the x-dependence is much more dramatic and interesting 
than the Q' dependence - the reverse of the traditional study of 
scaling violations. 

The kernels of the AP equations suggest a self-consistent 
ansatz in which the gluon distribution G(x,Q') is much larger than 
the sea-quark distributions qs(x.Q2). A preliminary approach can be 
made by dropping quarks in the gluoa evolution, except for running 

,coupling effects: 
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- W;,Q*) w J-; $$ PC&) G(x' .Q*) 

A good approximation to the asymptotically small-x dependence of (1) 
is given by replacing PGG(L) by its small-z limit. It is convenient 
to study xG(x.Q*) in order to smooth the singularity, and to use new 
variables y, C: 

y=Flnl/x ; b=ll-2/3nf.N=3 

E= ln(lnQ*/A~)/ln(Q~/A~)), 

aY.5) = xG(x.Q*) . 

It is straightforward to shov"lo that (1) leads to the differential 
equation 

a*Eb.q 
acay - $ E(Y.5) - 0 (2) 

with corrections of inverse powers of yg. A key point we wish to 
emphasize is the local character and symmetric evolution in the y 
and C variables given by Eq. 2. We will see that this leads to a 
fast and powerful method of making quantitative statements on the 
small-x region. Another key point is that y, because of 8N/b: 31/4 
in its definition, is truly a large logarithm: ~(10~~) s 29. Thus 
(2) is a good starting point in the SSC region of interest. 

The discussion of some consequences of Eq. 2 by Gribov. Levin 
and Ryskin' (GLR) has drawn much attention. Those authors choose 
not to discuss the coupled quark and gluon AP equations, but bring 
up important issues of unitarity in the context of a solution to (2). 
The conclusion of GLR and other vorkers,5 however. has been that for 
the perturbatlvely large Q* of interest the unitarlty problem has 
little practical effect. Although ve vi11 question that conclusion 
below, our main purpose is to discuss glum and quark distributions 
in regions of interest for the SSC, and to separate those regfoos 
which can be predicted with present data from those which cannot. 

As shown in Ref. (6). the quark evolution can be self- 
consistently incorporated, to leading power ofy,by similar leading 
approximations. We find that G(y.5) continues to satisfy (2). 
while the leading order sea-quark distributions 
be shown to obey 

usads's ss2Cs= 2bs can 

xu,(Y.O = ; + x G(x,Q*). 

The valence quarks are much smaller at large y and will be dropped. 
The differential relations' (2.3) are superior to more traditional 
quantities such as moments for the purposes of imposing boundary 
conditions (b.c. 's), as we now discuss. 
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The b.c.'s on the AP equations are data, but this is known only, 
in a limited region of x and Q'. Numerical methods and some 
modeling are needed to convert data to distributions at large y and 
F, vhere (2) and (3) are applicable. That work has been done by 
gHLQ2 and Johnson and Tung,' among others. Cur approach here is to 
write a general solution to (2) for e(y.Z), and impose b.c.'s given 
by evolv;d data, rather than low-energy data. Solhtions to (2J are 
not difficult to obtain; the solutions that grow in y5 are given by 

i%Y,S) - ; 2E v/2 
” JA”‘y-) + B&p21 I"Cfz3 

A, and g,, are determined by the arbitrary b.c.'s. 
importance of these, a physical analogy is useful. 

The coefficients 
To emphasize the 

Consider (2) 
plane, vith y and 
can verify ,that a 

as representing a wave propagating in the y. F 
F, playing the role of light-cone variables. One 
"particle" (wave-packet) of mass-squared -1. i.e. 

a free taehyon. is associated with G(y.5). Such an object has ex- 
ponentially growing amplitudes rather than the oscillatory dependence 
of familiar wave equations, but otherwise acts like an ordinary 
wave-packet. 

(41 

The b.c. coefficients 4, and B, parameterize initial conditions 
on the wave packet as a function of y/E. a function of the "velocity." 
while the Bessel functions I,(dm parameterize the unfolding of 
plane "waves." We are interested in a region far from the origin, 
2cy > > 1, where the exponential growth is evident: 

Iv(J2Sy) * I(<y) [l - 4v2 - l + * * * -1 
8(25y (5) 

I(CY) = exp(a)lG (2EY11'4 

The exp(m) behavior, discussed in GLR' and elsevhere"*5*" , 
comes out this way. Note that the first term in (5) is independent 
of v for asymptotically large yF. Combining this" with (4) gives 

z(y.C) - K(y/C)I(Ey) (6) 

io which the function K(y/F,) carries all the information on b.c.'s. 
The large yc problem is thus determined by the amplitude at a 

given y/C. a "ray," which then propagates out. Ooe way a predic- 
tion can be made without regard to boundary conditions is by relat- 
ing points on the same ray y = m5. for yC > > 1: 

ay',Y'/m) 

3, .Yh) 
-b ew((y'-y)J%3(y/y')1'2 . 
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011 the other hand, the boundary conditions are essential to make 
contact vith data. The assumptions of CLR seem to be that all co- 
efficients Au and B, in (4) are zero except for v = 0. That does 
not agree well with numerical vork, however. 

From the ray tracing analogy, the region y/c z. z- 1 actually 
probes many b-c. coefficients, but might look sinipler in terms of c 
at fixed y - yo. In fact, one can show' by direct differentiation 
that 

c(yrC) = Q(f)e a? 
is another form of solution to (2) for y > > 5.. This ansats is more 
convenient than (4) because K*(S) can be fit more directly. The 
functional form (7) is consistent with conventional b.c.'s of 
settling E(x.Qt) % const as x + 0. SO that B, E 0, v > 0. We incor- 
porate data by fitting the boundary value K*(t) at y= y. (x = 10-b). 
A suitable source is the Set 1 distributions for xG(x,Qr) of INLQ, 

which give for Aw = 200 IfeV. Qi = 5 GeV2: 

K*(5) =50.4(e< - o.g5,)e-'*95'J~ 

A test of the approach is given in Fig. 1. which show xG(x,Q2) at 
different x values as a function of Q2. The prediction is excellent 
for all Q2 ) 10' GeVr and x < 10m2, and acceptable even for 

x z 10-r. This demonstrates that the numerical sire of corrections 
to the yc > > 1, y > > 5 formalism are indeed small. In fact using 
(4), (7) and (8) we have a convenient analytic descriptions of the 
K8LQ distributions. The sea quarks also compare velle using (3). 
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Q2WV2) 

Fig. 1. Comparison of asymptotic estimates (7,8) for xC((x.Q2) 
(solid lines) with the numerically integrated distributions of 
Ref. 2 (dashed lines), at x = 10Vb. 10 -3, 10-2, 10-I (top to 
bottom). 

PRRDICTARLE REGIONS 

Now we turn to the sensitivity of the output to the input. Re- 
call that (6) showed us that b.c. 's can be set at fixed Sy by a func- 
tion of y/S. Data does not exist to predict K(y/C) for all y/S. how- 
ever8 ve would need the distributions for x + 0 at fixed large G. 
Nevertheless, a measure of the theoretical uncertainty can be gained 
by modeling data in the small X, Q2 region. If we are willing to 
accept a fixed fractional error in C, say (AC/E) 2 2 as physically 
reasonable boundary conditions are varied, we can determine the 
maximum y/f, for vhich K(y/C) is reliably known. 

Thus we write for pF, > > 1, 

c, = Ke(y/S)I(Fy)s 

where P is an index representing different input b.c.'s. Let the 
extremes in input be denoted by P = 1 and 2. The fractional uncer- 
tainty, 
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&E - (E, - 8,)/E, 

- K2(y’C)‘Kl(y’E) - 1. (9) 

is a function of y/F - *. We associate with each AZ/t? a value of m, 
m (AC/E), in this way. For definiteness the tvo extremes in the 
boundary conditions are taken to be: 

1) xG,(X.G) * O(1). x < 10-s. 

2) xG,(x&) -3 0(1/h). x < 10-2. 

Although the Iy region covered in the available numerical work is 
only marginally appropriate for the above discussion, let us illus- 
trate the idea by finding AC/E for cases 1) and 2) by using evolved 
data as presented by EIILQ' and as discussed further by Collins.' 
The l/fx behavior (G(x,Q2) or x-)'~) has been advocated by Regge 
theorists.' From the different cases we get curves of bounded frac- 
tional uncertainty, defined by y/5. 6 m(AE/E), or the bound 

l/x ; [ln(Q2/A2)/ln(Q~/A2)]E , 

E(A'%) = bm(Ac'@'8N. 

(10) I 

In Fig. (2) the results are illustrated. Rather than fitting K, and 
K,, as implied by (9). AE/e was fixed at large y. = 29 (x = 10s4) and 
then a value of 5 = Thus at 
x = 10-4, 

co and yo/&, = m. vas determined. 
Q2=10'GeV2. AC/E a 220% and y/c =,38.9. For an allowable 

error of a factor of 2, the exponent E(2) = 12.4 is the value to be 
used in (10). Similarly, at x = 10". Q2 = lo2 GeV2, AC/E = 450X, 
and m(4.5) = 59.7, giving E(4.5) = 19.1. 

Id- 
1 I I 

lo' lo' ro' Q2(&V') 1$ 

Fig. 2. Solid lines: Curves of fixed uncertainty Ae/c in the 
gluon distribution. Dashed line: an estimate of the line of 
Aa'o = 10 for (J evaluated at typical Q* and l/x. 
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Another consequence of these numbers fs aa estimate of the error 
of a cross section o(x,Q') going like the product of two parton dis- 
tributions. (An integral over the distributions can also be estl- 
mated" but is too detailed for our purposes here.) For a rough 
approximation to the point at which Aala v 10, a fractional uncer- 
tainty of a factor of about % in the distributions, we can interpo- 
late betveen E = 12 and E = 19 io (10). Given the other uncertain- 
ties, this defines a line 

l/x, 2 ~ln(QZ/A2)/ln~Q~/A2)l~'. 
(11) 

Aala = 10 

which is intermediate between the two lines in Fig. (2). 

DNITARITY BOUNDARY CONDITIONS 

Another interesting issue to consider with our methods is the 
new physics introduced by unitarity considerations. As emphasized 
in Refs. (4,5), the Ap evolution is not consistent with more general 
bounds on the total cross section. even when probed at large enough 
Q* for the perturbative QCD to be naively applicable. 

We will only mention here a preliminary consequence of the uni- 
tarity issue; a more thorough discussion vi11 be presented else- 
where." Our approach vi11 be based on the observation that the new 
physics from a region where the unitarity issue is-important can be 
represented by non-trivial boundary conditions on G(y,S). Note the 
b.c.'s are imposed in a region where the AP evolution, represented 
by (2). is applicable. This is because ve are not specifically 
interested in the details of the breakdown of the AR equations, say. 
at some Q* and x point. Such breakdown Is physically inevitable, 
but only constitutes a new b.c. in a nearby region where the AP evol- 
ution is applicable. (Note that the local character of (2.3) is im- 
portanrhere.) 

New boundary conditions on partial differential equations lead 
to global effects, however. Gne would not expect the new effects to 
be isolated into the unitarity region, in fact, because disturbances 
propagate with exponential growth. 

To illustrate this, we write a more general superposition vhich 
is a solution to (2) in the large yF. > > 1 region: 

~(y.0 = I dy'dE'd(y'-f(5'))K(r'/5') IIfS-C')(Y-y')l 

02) 

I,n this expression, y' = f(c) defines a curve along which specific 
b.c.'s are imposed. An example is the choice of GLR* of the line 

y=e *</c where the q uantity xG(x,Q*)/Q* is held fixed. There is 
nothing sacred about that choice. 
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Now we interpret (12) in tha light of our previous discussion. 
The point (y',E') in the integrand in (12) has been given an initial 
amplitude K(y’/F’) vhich propagates with exponential grovth accord- 
ing to I[(C-C')(y-y')] to a distant point (y.F). In other words. 
there is every reason to suspect that imposing certain new unitarity 
b.c.'s at small Qz and moderate l/x will significantly change the 
predictions in the distant regions of large l/x and large Q* needed 
for SSC physics. 

Physically, the abrupt collisions and coalescence that occurs 
among partons near the unltarity boundaries changes the parton dis- 
tributions. In the linearized description of (2), the partons re- 
scatter (reflect) and act as new sources for the next generations 
of partons at larger y and F. The explosive growth of the distri- 
butions in yE may amplify what appears to be a small effect. 

This point requires further investigation and detailed numerical 
work to see if it can become an important issue. We emphasize that 
this is a point where the different physics choices must be examined 
systematically to get an esthatk of the order of magnitude. Within 
the context of the previous discussion , there is some reason to anti- 
cipate that the new effects of unitarity boundary conditions may 
lead to large effects. 

This work was supported in part under Department of Energy 
Grant No, DE-pGo2-85ER 40214AQO2. 
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